
Proceedings of Machine Learning Research vol 291:1–29, 2025 38th Annual Conference on Learning Theory

Improved Algorithms for Effective Resistance Computation on Graphs

Yichun Yang YC.YANG@BIT.EDU.CN
Beijing Institute of Technology

Rong-Hua Li LIRONGHUABIT@126.COM
Beijing Institute of Technology

Meihao Liao MHLIAO@BIT.EDU.CN
Beijing Institute of Technology

Guoren Wang WANGGRBIT@GMAIL.COM

Beijing Institute of Technology

Editors: Nika Haghtalab and Ankur Moitra

Abstract
Effective Resistance (ER) is a fundamental tool in various graph learning tasks. In this paper,

we address the problem of efficiently approximating ER on a graph G = (V, E) with n vertices
and m edges. First, we focus on local online-computation algorithms for ER approximation, aim-
ing to improve the dependency on the approximation error parameter ϵ. Specifically, for a given
vertex pair (s, t), we propose a local algorithm with a time complexity of Õ(

√
d/ϵ) to compute

an ϵ-approximation of the s, t-ER value for expander graphs, where d = min{ds, dt}. This im-
proves upon the previous state-of-the-art, including an Õ(1/ϵ2) time algorithm based on random
walk sampling by Andoni et al. (ITCS’19) and Peng et al. (KDD’21). Our method achieves this
improvement by combining deterministic search with random walk sampling to reduce variance.
Second, we establish a lower bound for ER approximation on expander graphs. We prove that for
any ϵ ∈ (0, 1), there exist an expander graph and a vertex pair (s, t) such that any local algorithm
requires at least Ω(1/ϵ) time to compute the ϵ-approximation of the s, t-ER value. Finally, we
extend our techniques to index-based algorithms for ER computation. We propose an algorithm
with Õ(min{m + n/ϵ1.5,

√
nm/ϵ}) processing time, Õ(n/ϵ) space complexity and O(1) query

complexity, which returns an ϵ-approximation of the s, t-ER value for any s, t ∈ V for expander
graphs. Our approach improves upon the state-of-the-art Õ(m/ϵ) processing time by Dwaraknath
et al. (NeurIPS’24) and the Õ(m+ n/ϵ2) processing time by Li and Sachdeva (SODA’23).

1. Introduction

Given an undirected, unweighted graph G1, the Effective Resistance (ER) rG(s, t) of two vertices
s and t is the potential difference between s and t, when a unit electric flow is sent from s to t.
Formally, given the graph Laplacian matrix L and its pseudo-inverse L†, the s, t ER value is defined
as rG(s, t) = (es − et)

TL†(es − et), where es (resp., et) denotes the one-hot vector that takes
value 1 at s (resp., t) and 0 elsewhere. ER has a wide range of applications in graph algorithms and
graph learning tasks, including the design of maximum flow algorithms van den Brand et al. (2022);
Madry (2016), graph clustering Alev et al. (2018); Saito and Herbster (2023), graph sparsification
Spielman and Srivastava (2008), counting random spanning trees Li and Sachdeva (2023) and
understanding oversquashing in GNNs Black et al. (2023); Topping et al. (2022). As a result,

1. Though this paper primarily focus on unweighted graphs, all the algorithms and analysis can be directly generalized
to weighted graphs with mine we = Ω̃(1) and maxe we = Õ(1), where we denotes the weight of an edge e.

© 2025 Y. Yang, R.-H. Li, M. Liao & G. Wang.

mailto:yc.yang@bit.edu.cn
mailto:lironghuabit@126.com
mailto:mhliao@bit.edu.cn
mailto:wanggrbit@gmail.com

YANG LI LIAO WANG

designing efficient algorithms for ER computation has become a fundamental problem, attracting
significant attention in recent years Andoni et al. (2019); Peng et al. (2021); Yang and Tang (2023);
Liao et al. (2023); Li and Sachdeva (2023); Dwaraknath et al. (2024). In this paper, we focus on
computing an ϵ-approximation of ER on a given set of vertex pairs S ⊆ V × V . We begin by
formally defining the ER approximation problem.

Definition 1 Given undirected, unweighted graph G = (V, E), a set of vertex pairs S ⊆ V × V , a
parameter ϵ ∈ (0, 1), one requires to find an approximation r̂G ∈ RS such that r̂G(s, t) ≈ϵ rG(s, t)

2

with high probability (w.h.p.) for any vertex pairs (s, t) ∈ S. We refer to such r̂G ∈ RS as an
ϵ-approximation of rG on S.

The existing algorithms for computing ϵ-approximation of ER can be broadly classified into two
categories: (i) online-computation algorithms; and (ii) index-based algorithms. Specifically, for the
given graph G, online-computation algorithms directly calculates the s, t-ER value of a given vertex
pair s, t. In contrast, index-based algorithms preprocess the graph to construct a data structure,
which is then used to efficiently query the s, t-ER value for any given vertex pair s, t. The runtime
of the state-of-the-art algorithms are summarized in Table 1 and Table 2. In this paper, we assume all
the algorithms support the classic adjacency graph model Ron (2019), which allows the following
three types of queries on a graph G = (V, E) in constant time:

• Degree query (given any u ∈ V , get the degree deg(u) in constant time);

• Neighbor query (given any u ∈ V , get its i-th neighbor Neigh(u, i) in constant time);

• Jump query (uniformly sample any u ∈ V in constant time).

Online-computation algorithms. We begin by focusing on online-computation algorithms to
calculate ER value of a single vertex pair. For a given graph G, given a vertex pair (s, t), by
the definition rG(s, t) = (es − et)

TL†(es − et). Using a nearly linear-time Laplacian solver
Sachdeva et al. (2014), one can compute an approximation r̂G(s, t) such that r̂G(s, t) ≈ϵ rG(s, t)
in O(m log1/2 n log 1

ϵ) time, where n is the number of vertices, m is the number of edges, ϵ is the
approximation error parameter. In recent years, there has been growing interests in the local online-
computation of ER, which aims to compute r̂G(s, t) ≈ϵ rG(s, t) by just exploring a small portion of
the graph. These algorithms typically rely on the assumption that the graph is an expander. Andoni
et al. (2019) proposed an algorithm that computes an ϵ-approximation of rG(s, t) in Õ(1/ϵ2)3 time
for d-regular expander graphs. This result was later extended to expander graphs with unbounded
degrees by Peng et al. (2021) and Yang and Tang (2023). However, it remains an open question
whether the Õ(1/ϵ2) runtime can be improved for ϵ-approximating the ER value for local algo-
rithms. In this paper, we address this problem by proposing a local algorithm for ER computation
that achieves a lower time complexity dependency on ϵ. The key idea of our approach is to combine
deterministic search with random walks to reduce the variance produced by random walk sampling.

Theorem 2 (↓) Given an undirected, unweighted expander graph G = (V, E), s, t ∈ V , ϵ ∈ (0, 1).
There exists an algorithm that outputs the approximation r̂G(s, t) ≈ϵ rG(s, t) in Õ(

√
d/ϵ) time,

where d = min{ds, dt}.

2. In this paper, we say x ≈ϵ y if (1− ϵ)y ≤ x ≤ (1 + ϵ)y.
3. The Õ(.) notation represents the complexity omitting the log term of n,m and ϵ.

2

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Table 1: ER computation of single vertex pair

Methods Runtime Assumption

Sachdeva et al. (2014) O(m log1/2 n log 1
ϵ) none

Andoni et al. (2019) Õ(1/ϵ2) expanders
Peng et al. (2021) Õ(1/ϵ2) expanders

Yang and Tang (2023) Õ(1/ϵ2) expanders
This Paper Õ(

√
d/ϵ) expanders

Lower Bound (This Paper) Ω(1/ϵ) expanders

There is an additional remark that without the assumption on expander graphs, the time com-
plexity of our algorithm is Õ(κ(L)3

√
d/ϵ), where κ(L) is the condition number of the normalized

Laplacian matrix L (see Section 2 for Definition). This condition number dependency is the same
as the previous local algorithms Andoni et al. (2019); Peng et al. (2021); Yang and Tang (2023).

Lower bounds. We also study the lower bound for the ER computation of a single pair. Specifically,
we prove that the time complexity of any local online-computation algorithm for approximating ER
is at least Ω(1/ϵ), even holds for expander graphs. This result implies that the 1/ϵ dependency on
the approximation parameter ϵ is the best possible, and the gap between our upper bound and the
lower bound is only a factor

√
d.

Theorem 3 (↓) Given any ϵ ∈ (0, 1), there exists an expander graph G = (V, E), two vertices s
and t, such that for any (randomized) local algorithm that supports the adjacency model computes
the approximation r̂G(s, t) ≈ϵ rG(s, t) with success probability ≥ 2/3 requires Ω(1/ϵ) queries.

We note that the conditional lower bounds by Dwaraknath et al. (2024) implies a Ω(n2/
√
ϵ)

lower bound for all pairs ER approximation (i.e., ϵ-approximates rG(s, t) for all s, t ∈ V) for non-
fast matrix multiplication (FMM) algorithms. This further implies a Ω(1/

√
ϵ) lower bound for ER

approximation of a single pair. However, by Theorem 3, we prove a stronger lower bound Ω(1/ϵ).
Furthermore, our construction is simpler and does not rely on the non-FMM assumption.

Index-based algorithms. We show that our techniques can be generalized to index-based ER com-
putations. Following Li and Sachdeva (2023); Dwaraknath et al. (2024), we define the ER sketch
algorithm as follows.

Definition 4 (ER sketch) Given undirected, unweighted G = (V, E) and ϵ ∈ (0, 1), We call a
(randomized) algorithm an (Tp, Tq, St)-ER sketch algorithm if in O(Tp) processing time it creates a
binary string of length O(St), from which when queried with ∀s, t ∈ V , it outputs the approximation
r̂G(s, t) such that r̂G(s, t) ≈ϵ rG(s, t) w.h.p. in O(Tq) time.

Note that this ER sketch problem is closely related to the computation of graph Laplacian spar-
sifiers, which has been extensively studied in previous studies Spielman and Srivastava (2008);
Durfee et al. (2017); Jambulapati and Sidford (2018); Chu et al. (2018). The current main open
question is how to improve the processing time dependency on n,m and ϵ. The state-of-the-
art methods for this ER sketch problem on expander graphs include an algorithm with (Õ(m +
n/ϵ2), O(1), Õ(n/ϵ)) complexity based on random walk sampling Li and Sachdeva (2023) and an

3

YANG LI LIAO WANG

Table 2: ER computation of multiple vertex pairs S ⊂ V × V
Methods Runtime Assumption

Spielman and Srivastava (2008) Õ(m/ϵ2 + |S|/ϵ2) none
Durfee et al. (2017) Õ(m+ n/ϵ2 + |S|/ϵ2) none

Jambulapati and Sidford (2018) Õ(n2/ϵ) none
Chu et al. (2018) Õ(m+ n/ϵ1.5 + |S|/ϵ1.5) none

Li and Sachdeva (2023) Õ(m+ n/ϵ2 + |S|) expanders
Dwaraknath et al. (2024) Õ(m/ϵ+ |S|) expanders

This Paper Õ(min{m+ n/ϵ1.5,
√
nm/ϵ}+ |S|) expanders

Lower Bound Dwaraknath et al. (2024) Ω(nc1/ϵc2) with c1 + 2c2 = 3 S = V × V

algorithm with (Õ(m/ϵ), Õ(1), Õ(n/ϵ)) complexity based on Count Sketch and Laplacian solver
Dwaraknath et al. (2024). In this paper, we show that we can also improve the runtime for the ER
sketch problem by combining deterministic search with random walk sampling.

Theorem 5 (↓) There is an (Õ(min{m + n/ϵ1.5,
√
nm/ϵ}), O(1), Õ(n/ϵ)) ER sketch algorithm

for undirected, unweighted expander graph G = (V, E), and ϵ ∈ (0, 1).

From Theorem 5, we observe that the processing time of our ER sketch algorithm is Tp =
Õ(min{m + n/ϵ1.5,

√
nm/ϵ}). For the first term m + n/ϵ1.5, this represents a speedup of 1/

√
ϵ

compared to the Õ(m + n/ϵ2) algorithm proposed in Li and Sachdeva (2023). For the second
term

√
nm/ϵ, this achieves a

√
m/n speedup over the Õ(m/ϵ) algorithm proposed in Dwaraknath

et al. (2024). Consequently, our algorithm establishes an improved runtime bound compared to
the state-of-the-art methods. There is an additional remark that without the assumption on expander
graphs, the processing time of our algorithm is Õ(min{m+κ(L)3n/ϵ1.5, κ(L)3

√
nm/ϵ}), the space

complexity is Õ(κ(L)n/ϵ), and the query time remains O(1). This condition number dependency
is the same as the random walk-based method Li and Sachdeva (2023).

1.1. Technique overview

In this paper, we primarily focus on the Taylor expansion of L†(es − et) to compute the ER value
rG(s, t). Based on this Taylor expansion representation, existing local algorithms sampling random
walks to approximate L†(es−et) to ϵ-approximates rG(s, t) Andoni et al. (2019); Peng et al. (2021).
Our main algorithmic contribution is to combine deterministic search with random walk sampling,
thereby reducing the variance introduced by random walks. This approach is inspired by the two-
phase algorithm for local PageRank computation Lofgren et al. (2016); Wang et al. (2024); Wei
et al. (2024). Specifically, we use a variant of the classical coordinate gradient descent algorithm as
the deterministic part to coarsely approximate L†(es−et). Subsequently, we sample random walks
to refine the residuals produced by the coordinate gradient descent. We carefully analyze the error
bounds and complexity of our proposed algorithm, proving that the runtime dependency on ϵ can
be improved through the combination of coordinate gradient descent and random walk sampling.
For the index-based algorithm, we have the following two key observations: (i) the approximation
of L†(es − et) is a sparse vector; (ii) random walks can share the computation of the deterministic

4

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

part (i.e., coordinate gradient descent). Based on these two observations, we extend our techniques
and design an index-based algorithm faster than the state-of-the-art.

Additionally, we study the lower bound for the local computation of single pair ER on expander
graphs. Our key observation is the sensitivity of the parallel resistors. Roughly speaking, we con-
sider the following two cases: (i) case C1: we connect d resistors with resistance 1 in parallel; (ii)
case C2: we connect (1 − ϵ)d resistors with resistance 1 and ϵd resistors with resistance 2 in par-
allel. We prove that the effective resistance of C1 and C2 differs by Ω(ϵ) in terms of relative error.
However, distinguishing C1 and C2 is challenging for local algorithms. This observation leads to
the construction of our lower bound.

1.2. Related Work

Local graph algorithms. Local graph algorithms for several related problems have been exten-
sively studied. For instance, Liu and Gleich (2020); Fountoulakis et al. (2019, 2020, 2023) inves-
tigate local algorithms for conductance-based graph clustering, while Lofgren and Goel (2013);
Lofgren et al. (2016); Bressan et al. (2018); Wang et al. (2024); Wei et al. (2024) explore local
algorithms for PageRank computation. Additionally, Cohen-Steiner et al. (2018); Jin et al. (2023)
examine local algorithms for graph spectral density approximation, and Andoni et al. (2019) study
local algorithms to solve Laplacian systems. The problem setting of our work, which focuses on the
local computation of ER for a single-pair vertices, shares similarities with these problems. However,
the techniques developed for these related problems cannot be applied directly in our setting.

Lower bounds for ER computation. For the local computation of ER, in addition to our lower
bound concerning the approximation parameter ϵ, previous studies have also focused on establishing
lower bounds related to the condition number κ(L). Andoni et al. (2019) proved that any local
algorithm that ϵ-approximates a coordinate of the Laplacian linear system requires at least Ω(κ(L)2)
queries, when setting ϵ = Θ(1/ log n). However, since their problem setting differs from our local
ER computation problem, their results cannot be directly generalized to our problem. In addition,
Cai et al. (2023) provides a lower bound for the single-pair ER approximation problem for non-
expander graphs. They proved that there exists a non-expander graph G with minimum degree
δ ≥ 3, and an adjacent vertex pair (s, t) ∈ E , such that any local algorithm requires Ω(n) queries to
ϵ-approximates rG(s, t) for any ϵ ≤ 0.01. It can be easily proved that the condition number of their
construction is κ(L) = Θ(n), thus implies the Ω(κ(L)) lower bound for the ϵ-approximation of
s, t-ER value, for a given ϵ ≤ 0.01. However, it remains an open problem to study the relationship
between ϵ and κ(L) for local algorithms, so as to unify the different cases for expanders and non-
expanders (since for expanders κ(L) = Õ(1)).

Applications of ER computation. Since ER approximation algorithms can be used as a crucial sub-
routine for other graph analysis algorithms, many related studies have focused on ER approximation
and its applications. Among them, recent advancements in graph clustering and counting random
spanning trees are closely related to our results. For instance, Alev et al. (2018) proposed the
ER-based graph clustering algorithm in Õ(nm) time with non-trivial theoretical guarantees. Chu
et al. (2018) design an Õ(m+ n1.875/δ1.75) time algorithm that computes a (1 + δ)-approximation
of the number of spanning trees. This result was later improved by Li and Sachdeva (2023) to
Õ(m + n1.5/δ), achieving optimality for determinant sparsifier-based methods in the case of ex-
pander graphs. These works leverage the ER sketch algorithm as a key subroutine. Beyond these

5

YANG LI LIAO WANG

applications, ER computation has also been utilized in graph sparsification Spielman and Srivastava
(2008) and robust routing in road networks Sinop et al. (2023), among others. The potential impact
of our algorithms on enhancing the efficiency of these applications remains an open direction for
future research.

2. Preliminaries

General matrix notations. Given a matrix X ∈ Rn×n, we use λ(X) to denote its spectrum, λi(X)
represents the i-th eigenvalue of X, ui denotes the corresponding eigenvector. For a positive semi-
definite (PSD) matrix X, the condition number is defined as κ(X) = λmax(X)

λmin(X) , where λmax(X)

is the maximum eigenvalue of X, λmin(X) is the minimum non-zero eigenvalue of X. Note that
for singular matrix, this represents the finite condition number instead of the original definition
κ(X) =∞. Let es ∈ Rn be the one-hot vector, which takes value 1 at s ∈ [n] and 0 elsewhere.

Graph notations. Given an undirected, unweighted graph G = (V, E), we denote V as the vertex
set and E as the edge set. Let |V| = n be the number of vertices and |E| = m be the number of edges
of G. For a node u ∈ V , the set of neighbors is denoted asN (u) = {v|(u, v) ∈ E}, and the degree of
node u is denoted as du = |N (u)|. Let D be the diagonal degree matrix, with diagonal entry Di,i =
di (the degree of node i). Denote by A the adjacency matrix with Ai,j = 1 if and only if (i, j) ∈ E .
Then, the Laplacian matrix is defined as L = D −A. Let A = D−1/2AD−1/2 be the normalized
adjacency matrix, P = AD−1 be the probability transition matrix, andL = D−1/2LD−1/2 = I−A
be the normalized Laplacian matrix. We denote 0 = λ1(L) < λ2(L) ≤ ... ≤ λn(L) ≤ 2 as the
eigenvalues of L, and 1 = λ1(A) > λ2(A) ≥ ... ≥ λn(A) ≥ −1 as the eigenvalues of A. By
definition, we have λi(A) = 1− λi(L) for each i ∈ [n]. Following Dwaraknath et al. (2024); Cai
et al. (2023), we define the expander graphs based on conductance.

Definition 6 (Expander) We define the conductance of a graph G as:

ϕG = min
S⊂V

|{(u, v) ∈ E : u ∈ S, v ∈ V − S}|
min{

∑
u∈S du,

∑
u∈V−S du}

.

We refer to the graph G as a expander if ϕG = Ω̃(1).

By the classical Cheeger’s inequality (that is, λ2(L)/2 ≤ ϕG ≤
√

2λ2(L), see e.g. Spielman
(2019) Chapter 21), we have ϕG = Ω̃(1) if and only if λ2(L) = Ω̃(1), where λ2(L) is the second
smallest eigenvalue of the normalized Laplacian L (also the smallest non-zero eigenvalue). Conse-
quently, the definition of an expander graph can be equivalently characterized by λ2(L) = Ω̃(1) or
by the condition number κ(L) = Õ(1).

3. Basic representation

Following Peng et al. (2021); Li and Sachdeva (2023); Dwaraknath et al. (2024), we start by in-
terpreting the ER value through the Taylor expansion of the Laplacian pseudo-inverse (but our
interpretation is simpler and slightly differs from the previous works Peng et al. (2021); Li and
Sachdeva (2023); Dwaraknath et al. (2024)). We begin by stating the following lemma, which
expresses rG(s, t) as the sum of infinite step of lazy random walks.

6

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Lemma 7 (↓) The following Equation holds

rG(s, t) = (es − et)
TL†(es − et)

=
1

2
(es − et)

TD−1
+∞∑
l=0

(
1

2
I+

1

2
P

)l

(es − et)

with P = AD−1 denotes the probability transition matrix.

By the Taylor expansion of rG(s, t) from Lemma 7, we define the L-step truncated ER value
rG,L(s, t) as follows.

Definition 8 We define

rG,L(s, t) =
1

2
(es − et)

TD−1
L∑
l=0

(
1

2
I+

1

2
P

)l

(es − et)

as the L step truncation ER value.

Next, we aim to ensure that rG,L(s, t) serves as an ϵ-approximation of rG(s, t) by selecting a
sufficiently large truncation step L. However, for expander graphs, we will prove that L = Õ(1) is
sufficient to achieve this approximation.

Lemma 9 (↓) rG,L(s, t) is the ϵ-approximation of rG(s, t) when setting L ≥ 2κ(L) log n
ϵ .

By Lemma 9, the truncation step is only required to be L = Õ(1), since κ(L) = Õ(1) for
expander graphs. Inspired by Lemma 9, we define the following vector.

Definition 10 pL,u = 1
2

∑L
l=0

(
1
2I+

1
2P
)l
eu for any given u ∈ V .

From Definition 8 and Definition 10, we have the following representation of rG(s, t):

rG,L(s, t) =
1

2
(es − et)

TD−1
L∑
l=0

(
1

2
I+

1

2
P

)l

(es − et)

= eTs D
−1pL,s − eTt D

−1pL,s − eTs D
−1pL,t + eTt D

−1pL,t

=
pL,s(s)

ds
−

pL,s(t)

dt
−

pL,t(s)

ds
+

pL,t(t)

dt
.

(1)

Below, we give some basic properties of pL,u and rG(s, t) which will be frequently used in our
analysis later.

Fact 1 (↓) ∥pL,u∥1 ≤ L
2 for any u ∈ V .

Fact 2 (↓) pL,u(v)
dv

=
pL,v(u)

du
for any u, v ∈ V .

Fact 3 (↓) rG(s, t) ≥ 1
2

(
1
ds

+ 1
dt

)
.

7

YANG LI LIAO WANG

(a) Our online-computation algorithm for
computing pL,s(t)

(b) Our index-based algorithm for computing pL,u

Figure 1: Illustration of our algorithms for ER computation

4. Online ER Computation Algorithms

In this section, we present our online-computation algorithm for single-pair ER computation and
prove Theorem 2. By combining Eq. (1) with Lemma 9, we only need to find the approximation
p̂L,u(v) for each u, v ∈ {s, t} to approximate the ER value rG(s, t). The approximation is given by
r̂G(s, t) =

p̂L,s(s)
ds
− p̂L,s(t)

dt
− p̂L,t(s)

ds
+

p̂L,t(t)
dt

. Formally, we prove the following Theorem.

Theorem 11 (↓) There exists an Algorithm (i.e. our Algorithm 1) outputs the approximation
p̂L,u(v) of pL,u(v) such that |pL,u(v) − p̂L,u(v)|/dv ≤ ϵ

d for each u, v ∈ {s, t} w.h.p., where

d = min{ds, dt}. Furthermore, the time complexity of this Algorithm can be bounded by Õ(
√
d
ϵ).

Next, we describe our algorithm to find the approximation p̂L,u(v) of pL,u(v). The pseudo-code
is outlined in Algorithm 1. Algorithm 1 consists of two stages:

• Stage I: we perform a deterministic search, called CGD, to obtain a coarse approximation of
the vector pL,u, denote as qL,u. We output the residuals ri,u for every i ∈ [L].

• Stage II: we perform random walks to obtain the precise approximation of pL,s(s) (resp.,
pL,s(t),pL,t(s),pL,t(t)), denote as p̂L,s(s) (resp., p̂L,s(t), p̂L,t(s), p̂L,t(t)). Thus we obtain
the ϵ-approximation of rG(s, t).

As we discussed in Section 1, the high-level idea of our Algorithm is to use the deterministic
search to reduce the variance produced by random walks, see Fig. 1 (a) as an illustration. More
precisely, for Stage I we use a variant of the classical coordinate gradient descent algorithm to
approximate pL,u. We denote xl,u = 1

2(
1
2I +

1
2P)leu, therefore pL,u = 1

2

∑L
l=0

(
1
2I+

1
2P
)l
eu =∑L

l=0 xl,u. Notice that xl+1,u = (12I+
1
2P)xl,u for each l < L, so computing pL,u is equivalent to

solving the following linear system:
I

− 1
2I−

1
2P I

.
I

− 1
2I−

1
2P I

x0,u

x1,u

x2,u

...
xL,u

 =

1
2eu
0
0
...
0

8

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Algorithm 1 Our algorithm for single pair ER estimation
Input: G, s, t, L, ϵ

1: d← min{ds, dt}; rmax ← ϵ/
√
d ▷ Stage I: deterministic search

2: qL,s, ri,s for i ∈ [L]← CGD (G, s, L, rmax)
3: qL,t, ri,t for i ∈ [L]← CGD (G, t, L, rmax)
4: nr ← 4L2

ϵ2 rmaxd log n ▷ Stage II: random walk sampling
5: for j from 1 to nr do
6: Perform lazy random walk of length L start from s. For each step k with k ≤ L it arrive at a node w,

we update p̂L,t(s)← p̂L,t(s) +
ds

nr

∑L−k
i=0

ri,t(w)
dw

and p̂L,s(s)← p̂L,s(s) +
ds

nr

∑L−k
i=0

ri,s(w)
dw

7: Perform lazy random walk of length L start from t. For each step k with k ≤ L it arrive at a node w,
we update p̂L,s(t)← p̂L,s(t) +

dt

nr

∑L−k
i=0

ri,s(w)
dw

and p̂L,t(t)← p̂L,t(t) +
dt

nr

∑L−k
i=0

ri,t(w)
dw

8: end for
Output: r̂G(s, t) =

p̂L,s(s)
ds

− p̂L,s(t)
dt
− p̂L,t(s)

ds
+

p̂L,t(t)
dt

as the approximation of rG(s, t)

Algorithm 2 Coordinate Gradient Descent (CGD)
Input: G, u, L, rmax

1: The approximation qL,u(w) = 0 for each w ∈ V
2: ri,u(w) = 0 for each w ∈ V , i ∈ [L+ 1], and r0,u = 1

2es
3: for i = 0, 1, 2, ..., L do
4: while ∃w ∈ V such that ri,u(w) > rmax

L2 dw do
5: qL,u(w)← qL,u(w) + ri,u(w)
6: for v ∈ N (w) do
7: ri+1,u(v)← ri+1,u(v) +

1
2dw

ri,u(w)
8: end for
9: ri+1,u(w)← ri+1,u(w) +

1
2ri,u(w)

10: ri,u(w)← 0
11: end while
12: end for
Output: qL,u as the coarse approximation of pL,u, residuals ri,u for each i ∈ [L]

For this linear system, we compute the approximation x̂l,u for each l ∈ [L] and thus obtain the
approximation qL,u =

∑L
l=0 x̂l,u. For a given source node u, the Coordinate Gradient Descent

(CGD) Algorithm outputs the approximation qL,u and residuals ri,u for every i ∈ [L] (without
explicitly outputs each approximation x̂l,u). Initially, we define the residual vector ri,u = 0 for
i ∈ [1, ..., L] and r0,u = 1

2eu and the approximation qL,u = 0. Next, for each i ∈ [0, ..., L], for each
w ∈ V with ri,u(w) >

rmax
L2 dw, we perform the following three steps (Line 4-11 of Algorithm 2):

(i) add the score qL,u(w) by ri,u(w); (ii) uniformly distribute 1
2ri,u(w) to the neighbor of w, namely

ri+1,u(v) ← ri+1,u(v) +
1

2dw
ri,u(w) for v ∈ N (w) and ri+1,u(w) ← ri+1,u(w) +

1
2ri,u(w); (iii)

set ri,u(w) to 0. When the iteration stops, Algorithm 2 outputs qL,u as the coarse approximation
of pL,u, and L residual vectors ri,u for each i ∈ [L]. For Stage II, we sample nr lazy random
walks from the source node s, each random walk has length L to refine the approximation (Line 6
of Algorithm 1). Specifically, a lazy random walk of length L from s denotes a sequence (v0 =
s, v1, ..., vL) such that for every 1 ≤ k ≤ L, vk is a random neighbor of vk−1 with probability 1

2 ,
and vk+1 = vk with probability 1

2 . For each step k ≤ L when the lazy random walk arrives at a node

w = vk, we update p̂L,t(s)← p̂L,t(s)+
∑L−k

i=0
ri,t(w)
dw

and p̂L,s(s)← p̂L,s(s)+
∑L−k

i=0
ri,s(w)
dw

. We
perform similar steps for the sink node t (Line 7 of Algorithm 1).

9

YANG LI LIAO WANG

(a) graph G1 (b) graph G2 (c) parallel resistor illustration

Figure 2: illustration of the construction of our lower bound

5. Lower Bound for Online Single-Pair ER Computation

In this section, we prove a lower bound for online single-pair ER computation on graphs. Below,
we first describe our construction. Given the parameter ϵ ∈ (0, 1), we consider two vertex sets S1

and S2, with |S1| = n1 and |S2| = n2. We define a d-regular expander graph on S1. Note that
this can be easily constructed because a random d-regular graph is an expander graph with high
probability when d ≥ log2 n1, by Friedman (2003). On S2, we define an empty graph with only
n2 isolated vertices and n2 ≪ n1. Then, we add an additional (source) node s with ds neighbors,
such that ds ≫ 1/ϵ. We randomly choose x vertices in S1, denote as N1 = {v1, ..., vx} ⊂ S1, and
we randomly choose (ds − x) vertices in S2, denote as N2 = {vx+1, ..., vds} ⊂ S2. We set the
neighbors of s to beN (s) = {v1, ..., vds} = N1∪N2. For graph G1 we directly choose x = ds, and
for graph G2 we choose x = (1 − ϵ)ds for the given parameter ϵ ∈ (0, 1). Finally, we add a (sink)
node t that connect to all vertices in S1 and S2. We choose d such that d ≥ max{ds log n1, log

2 n1}
and n1 ≥ 2d3. See Fig. 2 (a),(b) as an illustration. Clearly, by our construction, any subset of G1
and G2 has Ω(1) expansion, so they are expanders. Then, we prove the following Theorem, which
immediately implies Theorem 3.

Theorem 12 |rG1(s, t) − rG2(s, t)| > ϵ
4rG1(s, t), but any randomized local algorithm requires

Ω(1ϵ) time to distinguish G1 and G2 with probability ≥ 2/3.

First, to get intuitions for why |rG1(s, t)− rG2(s, t)| > ϵ
4rG1(s, t), we use the representation of

parallel resistors, see Fig. 2 (c) as an illustration. By our construction, we connect x neighbors of
s to S1 and connect (ds − x) neighbors of s to S2. Then, we connect the two parts of the resistor
S1, S2 in parallel. For G1 all the neighbors of s is in S1; for G2 we choose x = (1 − ϵ)ds, thereby
there are (1− ϵ) fraction of the neighbors of s in S1 and ϵ fraction of the neighbors in S2. We prove
the s, t resistance from S1 is 1

x + o(1x); while the s, t resistance from S2 is 2
ds−x . As a result, the

ER value rG1(s, t) and rG2(s, t) will differ by ϵ
4 in terms of relative error. To reach this end, we first

prove the following Lemma.

Lemma 13 (↓) rS1(s, t) =
1
x+O(1

dx log n1) =
1
x+O(1

dsx
), and rS2(s, t) =

2
ds−x . Where rS1(s, t)

denotes the s, t resistance only consider the edges between S1 ∪{s, t} and rS2(s, t) denotes the s, t
resistance only consider the edges between S2 ∪ {s, t}.

Armed with Lemma 13 and the parallel resistance formula, we prove that rG1(s, t) and rG2(s, t)
differs by ϵ

4 in terms of relative error.

10

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Lemma 14 (↓) |rG1(s, t)− rG2(s, t)| > ϵ
4rG1(s, t).

Finally, we prove that any local algorithms to distinguish G1 and G2 requires at least Ω(1ϵ)
queries.

Lemma 15 (↓) Any local algorithm that distinguish G1 and G2 with probability ≥ 2/3 requires at
least Ω(1ϵ) queries.

Combining Lemma 14 and Lemma 15, we immediately prove Theorem 12, which implies The-
orem 3.

6. Index-based Algorithms for ER Computation

In this section, we present a more efficient index-based ER computation algorithm and prove Theo-
rem 5. Note that by Theorem 2, if we directly use Algorithm 1 to compute the all pair ER values,
the time complexity is bounded by:

Õ

∑
u∈V

∑
v∈V,dv≤du

√
dv
ϵ

 ≤ Õ

(∑
u∈V

∑
v∈V

√
dv
ϵ

)

(Cauchy − Schwarz) ≤ Õ

1

ϵ

∑
u∈V

(∑
v∈V

12

)1/2(∑
v∈V

(
√

dv)
2

)1/2

= Õ

(
1

ϵ

∑
u∈V

√
nm

)
= Õ

(
1

ϵ
n
√
nm

)
.

In this section, we will prove that Õ(
√
nm/ϵ) processing time is enough for the ER sketch

algorithms. Recall that by Eq. (1), given any vertex pair (s, t), one can approximate rG(s, t) by
the linear combination of pL,s(s),pL,s(t),pL,t(s) and pL,t(t). Therefore, if one can approximates
these n vectors pL,u for all u ∈ V , one can approximate rG(s, t) for any given vertex pair (s, t). We
prove the following Theorem.

Theorem 16 (↓) There exists an algorithm (i.e. Algorithm 3) that outputs the approximation p̂L,u

for every u ∈ V , such that |p̂L,u(v)− pL,u(v)| ≤ ϵ for every v with dv ≤ du. In addition, the time
complexity of this algorithm is Õ(

√
nm/ϵ), the space complexity is Õ(n/ϵ).

The key observation here is that we can approximate the vector pL,u within almost the same
time as just approximate pL,u(v) for a vertex v. The pseudo-code of our ER sketch algorithm is
outlined in Algorithm 3. To compute the approximation vector p̂L,u, Algorithm 3 consists of three
stages, see Fig. 1 (b) as an illustration.

• Stage I: perform n
(1)
r random walks to find a candidate set, denote as S′

ϵ,u = {w ∈ V :
p′
L,u(w) ≥ ϵ/2};

• Stage II: perform CGD operations from each v ∈ S′
ϵ,u;

• Stage III: perform random walks start from u to derive the final approximation p̂L,u.

11

YANG LI LIAO WANG

Algorithm 3 Our algorithm for building the index
Input: G, s, t, L, ϵ

1: for u ∈ V do
2: n

(1)
r ← L2 logn

ϵ , p′
L,u ← 0 ▷ Stage I: find the ϵ-contributing set

3: Perform n
(1)
r lazy random walks of length L start from u. For each lazy random walk, for each step k

with k ≤ L it arrive at a node w, we update p′
L,u(w)← p′

L,u(w) +
1

2n
(1)
r

4: Define S′
ϵ,u = {w ∈ V : p′

L,u(w) > ϵ/2} as the candidate set
5: rmax ← Lϵ

√
n
m ▷ Stage II: CGD from candidate set S′

ϵ,u

6: for v ∈ S′
ϵ,u do

7: qL,v, ri,v for i ∈ [L]← CGD (G, w, L, rmax

2p′
L,u(v)

)
8: end for
9: n

(3)
r ← L

ϵ2 rmaxdu log n ▷ Stage III: random walk sampling from u

10: Perform n
(3)
r lazy random walks of length L start from u, denote N (3)

u,w,k as the number of walks arrive
at w at step k with k ≤ L.

11: for v ∈ S′
ϵ,u with dv ≤ du do

12: p̂L,u(v)← qL,v(u)dv

du
+ dv

n
(3)
r

∑L
k=0

∑
w∈V

(∑L−k
i=0

ri,u(w)
dw

)
N

(3)
u,w,k

13: end for
14: end for
Output: p̂L,u for every u ∈ V

Algorithm 4 Our query algorithm for s, t-ER value
Input: s, t, p̂L,u for all u ∈ V

1: if ds ≤ dt then
2: r̂G(s, t) =

p̂L,s(s)
ds

− 2
p̂L,t(s)

ds
+

p̂L,t(t)
dt

3: else
4: r̂G(s, t) =

p̂L,s(s)
ds

− 2
p̂L,s(t)

dt
+

p̂L,t(t)
dt

5: end if
Output: r̂G(s, t)

Specifically, our algorithm is implemented as follows. First, we perform a traversal for all
u ∈ V . For each u, we compute the approximation p̂L,u. For Stage I, we perform n

(1)
r random walks

from the source node u to compute a very coarse approximation p′
L,u (Lines 2-4 in Algorithm 3). We

define the candidate set S′
ϵ,u = {w ∈ V : p′

L,u(w) > ϵ/2} and next we focus on the approximation
on the candidate set S′

ϵ,u (the size of the candidate set S′
ϵ,u is only Õ(1ϵ), independent of n). For

Stage II, we perform CGD operations from each v ∈ S′
ϵ,u with the threshold rmax

2p′
L,u(v)

(Lines 5-8 in

Algorithm 3). For Stage III, we perform n
(3)
r random walks from the source node u (Lines 9-10 in

Algorithm 3). The key mechanism here is that the random walks can share the computation of CGD
for different pL,u(v1) and pL,u(v2) with v1 ̸= v2. Therefore, to approximate the vector pL,u we
only need to perform random walks from the source node u without the traversal for w ∈ V . Finally,
we update the result and get the final approximation p̂L,u(v) for every v ∈ S′

ϵ,u with dv ≤ du (Lines
11-13 in Algorithm 3). For this step, the operation time is at most the same as Stage II, this enables
the local computation of the vector pL,u.

12

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

7. Conclusion

In this paper, we propose several new algorithms for approximating Effective Resistance (ER) with
reduced dependency on the error parameter ϵ. For online ER computation algorithms, we inte-
grate deterministic search with random walk sampling to develop an Õ(

√
d/ϵ)-time algorithm that

ϵ-approximates the single-pair ER value in expander graphs. Additionally, we establish that Ω(1/ϵ)
represents the lower bound for local ER approximation, even in the case of expander graphs. For
index-based ER computation algorithms, we extend our techniques and propose an ER sketch al-
gorithm that advances the state-of-the-art. For the open problems, beyond the natural challenge of
improving both upper and lower bounds, it would particularly be interested in exploring the rela-
tionship between κ(L) and ϵ in the context of the lower bound for local ER computation, so as to
unify the analysis for both expander and non-expander graphs.

Acknowledgments

This work is supported by the Funds of the National Natural Science Foundation of China (NFSC)
No.U2241211 and U24A20255. Rong-Hua Li is the corresponding author of this paper.

References

Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph clustering using
effective resistance. In 9th Innovations in Theoretical Computer Science Conference (ITCS),
2018.

Alexandr Andoni, Robert Krauthgamer, and Yosef Pogrow. On solving linear systems in sublinear
time. In 10th Innovations in Theoretical Computer Science Conference (ITCS), 2019.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning
(ICML), 2023.

Marco Bressan, Enoch Peserico, and Luca Pretto. Sublinear algorithms for local graph centrality
estimation. In 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2018.

Dongrun Cai, Xue Chen, and Pan Peng. Effective resistances in non-expander graphs. 31st Annual
European Symposium on Algorithms (ESA), 2023.

Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
Graph sparsification, spectral sketches, and faster resistance computation via short cycle decom-
positions. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
2018.

David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. Approximating the
spectrum of a graph. In Proceedings of the 24th acm sigkdd international conference on knowl-
edge discovery & data mining (KDD), 2018.

David Durfee, Rasmus Kyng, John Peebles, Anup B. Rao, and Sushant Sachdeva. Sampling random
spanning trees faster than matrix multiplication. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), 2017.

13

YANG LI LIAO WANG

Rajat Vadiraj Dwaraknath, Ishani Karmarkar, and Aaron Sidford. Towards optimal effective resis-
tance estimation. Advances in Neural Information Processing Systems (NeurIPS), 2024.

Kimon Fountoulakis, Farbod Roosta-Khorasani, Julian Shun, Xiang Cheng, and Michael W Ma-
honey. Variational perspective on local graph clustering. Mathematical Programming, 2019.

Kimon Fountoulakis, Di Wang, and Shenghao Yang. P-norm flow diffusion for local graph cluster-
ing. In International Conference on Machine Learning (ICML), 2020.

Kimon Fountoulakis, Meng Liu, David F Gleich, and Michael W Mahoney. Flow-based algorithms
for improving clusters: A unifying framework, software, and performance. SIAM Review, 2023.

Joel Friedman. A proof of alon’s second eigenvalue conjecture. In Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing (STOC), 2003.

Arun Jambulapati and Aaron Sidford. Efficient Õ(n/ϵ) spectral sketches for the laplacian and its
pseudoinverse. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2018.

Yujia Jin, Christopher Musco, Aaron Sidford, and Apoorv Vikram Singh. Moments, random walks,
and limits for spectrum approximation. In The Thirty Sixth Annual Conference on Learning
Theory (COLT), 2023.

Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-fast, sparse,
and simple. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
2016.

Lawrence Li and Sushant Sachdeva. A new approach to estimating effective resistances and count-
ing spanning trees in expander graphs. In Proceedings of the 2023 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2023.

Meihao Liao, Rong-Hua Li, Qiangqiang Dai, Hongyang Chen, Hongchao Qin, and Guoren Wang.
Efficient resistance distance computation: The power of landmark-based approaches. Proceed-
ings of the ACM on Management of Data (SIGMOD), 2023.

Meng Liu and David F Gleich. Strongly local p-norm-cut algorithms for semi-supervised learning
and local graph clustering. Advances in neural information processing systems (NeurIPS), 2020.

Peter Lofgren and Ashish Goel. Personalized pagerank to a target node. arXiv preprint
arXiv:1304.4658, 2013.

Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Personalized pagerank estimation and search:
A bidirectional approach. In Proceedings of the Ninth ACM International Conference on Web
Search and Data Mining (WSDM), 2016.

Aleksander Madry. Computing maximum flow with augmenting electrical flows. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), 2016.

Pan Peng, Daniel Lopatta, Yuichi Yoshida, and Gramoz Goranci. Local algorithms for estimat-
ing effective resistance. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (KDD), 2021.

14

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Dana Ron. Sublinear-time algorithms for approximating graph parameters. In Computing and
Software Science: State of the Art and Perspectives. 2019.

Sushant Sachdeva, Nisheeth K Vishnoi, et al. Faster algorithms via approximation theory. Founda-
tions and Trends® in Theoretical Computer Science, 2014.

Shota Saito and Mark Herbster. Multi-class graph clustering via approximated effective p-
resistance. In International Conference on Machine Learning (ICML), 2023.

Ali Kemal Sinop, Lisa Fawcett, Sreenivas Gollapudi, and Kostas Kollias. Robust routing using
electrical flows. ACM Transactions on Spatial Algorithms and Systems, 2023.

Spielman. Spectral and Algebraic Graph Theory. Unpublished Manuscript, 2019.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. In Proceed-
ings of the fortieth annual ACM symposium on Theory of computing (STOC), 2008.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In Interna-
tional Conference on Learning Representations (ICLR), 2022.

Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P Liu, Richard Peng, and Aaron
Sidford. Faster maxflow via improved dynamic spectral vertex sparsifiers. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing (STOC), 2022.

Hanzhi Wang, Zhewei Wei, Ji-Rong Wen, and Mingji Yang. Revisiting local computation of pager-
ank: Simple and optimal. In Proceedings of the 56th Annual ACM Symposium on Theory of
Computing (STOC), 2024.

Zhewei Wei, Ji-Rong Wen, and Mingji Yang. Approximating single-source personalized pagerank
with absolute error guarantees. In 27th International Conference on Database Theory (ICDT),
2024.

Renchi Yang and Jing Tang. Efficient estimation of pairwise effective resistance. Proceedings of
the ACM on Management of Data (SIGMOD), 2023.

Appendix A. Guideline of the Appendix

In Appendix B, we provide some explainations for the parallel resistance formula. In Appendix
C, we provide the theoretical analysis of Algorithm 1 (i.e. our query processing algorithm for ER
computation of a single pair) and prove Theorem 2. In Appendix D, we provide the theoretical
analysis of Algorithm 3 (i.e. our index based algorithm for ER computation) and prove Theorem 5.
In Appendix E, we provide the other omitting proofs of this paper, including the omitting proofs in
section 3 and section 5.

15

YANG LI LIAO WANG

Appendix B. Parallel Resistance Formula

For the proof of our lower bound, we provide some details of the parallel resistance formula. We
begin by the definition of Schur complement.

Definition 17 Given a graph G = (V, E), The Schur complement of a subset S ⊂ V is a weighted
graph with the corresponding Laplacian matrix SC(G, S) = L[S,S] − L[S,S̄]L

−1
[S̄,S̄]

L[S̄,S], where

S̄ = V − S and L[S,S] denotes the submatrix of L with row and column indexed by S.

There is a well known result that the s, t-ER value on graph G is equal to the s, t-ER value on
the Schur complement.

Theorem 18 For a subset S ⊂ V such that s, t ∈ S, we have rG(s, t) = (es − et)
TL†(es − et) =

(es − et)
TSC(G, S)†(es − et).

Now we consider a graph G = (V, E), such that V = {s, t} ⊔ S1 ⊔ S2, and there are no edges
between S1 and S2, i.e. E(S1, S2) = ∅, and (s, t) /∈ E . We denote GS1 as the induced subgraph on
{s, t}⊔S1, and GS2 as the induced subgraph on {s, t}⊔S2. We denote rG(s, t) as the s, t-ER value
on G, rS1(s, t) as the s, t-ER value on subgraph GS1 , and rS2(s, t) as the s, t-ER value on subgraph
GS2 , respectively. Then we provide the following parallel resistance formula.

Theorem 19 1
rG(s,t)

= 1
rS1

(s,t) +
1

rS2
(s,t) .

Proof We prove this result by linear algebra argument instead of physics intuition. First, we con-
sider the Schur complement of GS1 on {s, t}, SC(GS1 , {s, t}). We notice that this is a graph with
single (weighted) edge between s, t. So we denote SC(GS1 , {s, t}) = ws,t(es−et)(es−et)T . Simi-
larly, we denote SC(GS2 , {s, t}) = w′

s,t(es−et)(es−et)T . Clearly, by definition ws,t = 1/rS1(s, t)
and w′

s,t = 1/rS2(s, t). Next, we consider the Schur complement of G on {s, t}, SC(G, {s, t}). By
E(S1, S2) = ∅ and the fact that taking the Schur complement is equivalent to the partial Gaussian
elimination procedure Kyng and Sachdeva (2016), SC(G, {s, t}) is a graph with single edge be-
tween s, t with edge weight ws,t + w′

s,t (because the process of eliminating S1 and eliminating S2

are independent). By definition ws,t + w′
s,t = 1/rG(s, t). This finishes the proof.

By the same argument, we can generalize the parallel resistance formula to the k parallel resis-
tance case. That is, when we consider V = {s, t}⊔S1⊔S2⊔ ...⊔Sk with E(Si, Sj) = ∅, i, j ∈ [k].
Then 1

rG(s,t)
=
∑k

i=1
1

rSi
(s,t) + I(s,t)∈E , where I(s,t)∈E is the indicator function. Since the proof is

almost same as Theorem 19, we omit it here.

Appendix C. Theoretical analysis of Algorithm 1

In this section, we prove the theoretical guarantee output by Algorithm 1. To this end, we begin by
analyzing the output guarantee by CGD (Algorithm 2). The following Lemma shows the relation-
ship between the approximation vector qL,u output by CGD and the accurate vector pL,u.

Lemma 20 The following equation holds at any iteration of Algorithm 2:

pL,u = qL,u +
L∑
i=0

L∑
k=i

(
1

2
I+

1

2
P

)k−i

ri,u. (2)

16

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Proof of Lemma 20. The proof is by induction. For the initial step, r0,u = 1
2es and ri,u = 0 for each

i ∈ [1, 2, ..., L]. Therefore the right hand side of Equ. (2) equals
∑L

i=0

(
1
2I+

1
2P
)k−i

r0,u = pL,u.
Next we assume that after j CGD operations, the approximation vector qL,u and the residuals
r0,u, r1,u, ..., rL,u satisfy Equ. (2). For the (j + 1)th CGD iteration, we consider the operation
on (w, i). That is, we perform following three operations: (i) qL,u(w) ← qL,u(w) + ri,u(w); (ii)
ri+1,u(v) ← ri+1,u(v) +

1
2dw

ri,u(w) for each v ∈ N (w) and ri+1,u(w) ← ri+1,u(w) +
1
2ri,u(w);

(iii) ri,u(w) ← 0. We define the resulting vector q̂L,u and r̂0,u, r̂1,u, ..., r̂L,u after this CGD opera-
tion, and consider the difference ∆(w, i) of the right hand side of Eq. (2):

∆(w, i) = qL,u +

L∑
i=0

L∑
k=i

(
1

2
I+

1

2
P

)k−i

ri,u − q̂L,u +

L∑
i=0

L∑
k=i

(
1

2
I+

1

2
P

)k−i

r̂i,u.

We note the following three equations hold after the CGD operation on (w, i):

qL,u − q̂L,u = ri,u(w)ew;

ri,u − r̂i,u = −ri,u(w)ew;

ri+1,u − r̂i+1,u =
1

2
ri,u(w)ew +

∑
v∈N (w)

1

2dw
ri,u(w)ev

= ri,u(w)

(
1

2
I+

1

2
P

)
ew.

Therefore,

∆(w, i) = ri,u(w)ew − ri,u(w)
L∑

k=i

(
1

2
I+

1

2
P

)k−i

ew

+ ri,u(w)

L∑
k=i+1

(
1

2
I+

1

2
P

)k−i(1

2
I+

1

2
P

)
ew

= ri,u(w)− ri,u(w) = 0.

Thus Eq. (2) also holds after (j + 1)th CGD operation. By induction, Eq. (2) holds at any iteration
of Algorithm 2. This finishes the proof. ■

Next, we show that CGD outputs the approximation vector qL,u satisfies the certain error guar-
antee.

Lemma 21 CGD outputs the approximation qL,u such that pL,u(w) − rmaxdw ≤ qL,u(w) ≤
pL,u(w) for any w ∈ V . Furthermore, the time complexity of CGD is O(L3

rmax
).

17

YANG LI LIAO WANG

Proof of Lemma 21. By Lemma 20, Eq. (2) holds at any iteration of CGD. By our implementation,
the residuals satisfy ri,u(w) ≤ rmaxdw

L2 for any w ∈ V , i ∈ [L]. Therefore, we have:

∥D−1(pL,u − qL,u)∥∞ =

∥∥∥∥∥D−1
L∑
i=0

L∑
k=i

(
1

2
I+

1

2
P

)k−i

ri,u

∥∥∥∥∥
∞

≤
L∑
i=0

L∑
k=i

∥∥∥∥∥D−1

(
1

2
I+

1

2
P

)k−i

ri,u

∥∥∥∥∥
∞

=

L∑
i=0

L∑
k=i

∥∥∥∥∥
(
1

2
I+

1

2
PT

)k−i

D−1ri,u

∥∥∥∥∥
∞

≤
L∑
i=0

L∑
k=i

∥∥∥∥∥
(
1

2
I+

1

2
PT

)k−i
∥∥∥∥∥
∞

∥∥D−1ri,u
∥∥
∞.

Next, we notice that
∥∥∥(12I+ 1

2P
T
)k−i

∥∥∥
∞

= 1 since
(
1
2I+

1
2P

T
)k−i is a row-stochastic matrix and

∥D−1ri,u∥∞ ≤ rmax
L2 . Therefore,

∥D−1(pL,u − qL,u)∥∞ ≤
L∑
i=0

L∑
k=i

rmax

L2
≤ rmax.

Thus pL,u(w)− rmaxdw ≤ qL,u(w) ≤ pL,u(w) + rmaxdw for any w ∈ V . Furthermore, we notice
that ri,u(w) ≥ 0 for ∀w ∈ V , i ∈ [L]. By Eq. (2), we obtain qL,u(w) ≤ pL,u(w) for ∀w ∈ V .
Putting it together, we have pL,u(w)− rmaxdw ≤ qL,u(w) ≤ pL,u(w).

For the time complexity of CGD, we observe that at the beginning of each iteration (Line 4 in
Algorithm 2), ∥ri,u∥1 ≤ 1, since ∥ri,u∥1 is non-increasing with i. Next, we only invoke nodes
w ∈ V with ri,u(w) >

rmaxdw
L2 , for each w the operation numbers is O(dw) (Line 5-9 in Algorithm

2). Finally, we set ri,u(w) ← 0 after the operation on w (Line 10 in Algorithm 2). Thus, one
unit operation will decrease ∥ri,u∥1 by at least rmax

L2 in average. So the total operations of CGD in
each iteration (Line 4-11 in Algorithm 2) can be bounded by O(L2

rmax
). Since Algorithm 2 has L

iterations, the total time complexity is bounded by O(L3

rmax
). ■

By Lemma 21, when setting rmax = ϵ
d , the approximation guarantee by CGD already satis-

fies Theorem 11 and thus this is an algorithm for ϵ-approximate ER estimation. However, the time
complexity of CGD is O(L3

rmax
) = Õ(dϵ). Next we will prove that combining with random walk

sampling (i.e. Stage II in algorithm 1), this time complexity can be reduced to Õ(
√
d
ϵ) while main-

taining the same error guarantee. To this end, we consider again the output guarantee of CGD for a
given node v ∈ V:

pL,u(v) = qL,u(v) +

L∑
i=0

L∑
k=i

((
1

2
I+

1

2
P

)k−i

ri,u

)
(v).

18

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

We divide dv on both sides of the equation:

pL,u(v)

dv
=

qL,u(v)

dv
+

L∑
i=0

L∑
k=i

((
1

2
I+

1

2
P

)k−i

ri,u

)
(v)/dv

=
qL,u(v)

dv
+

L∑
i=0

L∑
k=i

∑
w∈V

ri,u(w)

dv
eTv

(
1

2
I+

1

2
P

)k−i

ew

=
qL,u(v)

dv
+

L∑
i=0

L∑
k=i

∑
w∈V

ri,u(w)

dw
eTw

(
1

2
I+

1

2
P

)k−i

ev

=
qL,u(v)

dv
+

L∑
i=0

L−i∑
k=0

∑
w∈V

ri,u(w)

dw
eTw

(
1

2
I+

1

2
P

)k

ev

=
qL,u(v)

dv
+

L∑
k=0

∑
w∈V

(
L−k∑
i=0

ri,u(w)

dw

)
eTw

(
1

2
I+

1

2
P

)k

ev.

(3)

We observe that eTw
(
1
2I+

1
2P
)k

ev is the probability that a k-step lazy random walk start from
v and ends at w. Thus we define a sequence of random variables output by lazy random walks:
{Xv,k,j} with v ∈ {s, t}, k ∈ [L] and j ∈ [nr]. Each Xv,k,j represents the jth sample of random
walk, start from node v, and the walk length is k. If this k step lazy random walk arrive at w,
then Xv,k,j =

∑L−k
i=0

ri,u(w)
dw

. We denote X̄v,k = 1
nr

∑nr
j=1Xv,k,j as the average of these random

variables. So by Eq. (3), clearly we have:

pL,u(v)

dv
=

qL,u(v)

dv
+

L∑
k=0

E[X̄v,k]. (4)

This immedeately proves that Algorithm 1 outputs the unbiased approximation of pL,u(v). The
next Lemma proves the concentration of this approximation.

Lemma 22 When setting nr = Õ(L
2

ϵ2
rmaxd), we have

∣∣X̄v,k − E[X̄v,k]
∣∣ ≤ ϵ

Ld with probability at
least 1− n−1, for every v ∈ {s, t} and k ∈ [L].

Proof of Lemma 22. We observe that by our implementation of CGD, ri,u(w) ≤ rmaxdw
L2 for any

w ∈ V , i ∈ [L]. Thus, for each random variable |Xv,k,j | ≤ maxw,k

{∑L−k
i=0

ri,u(w)
dw

}
≤ rmax

L . Next,
we note that for fixed k, v, the random variables {Xv,k,j} are i.i.d since we sample random walks
independently. Thus,

V ar[X̄v,k] =
1

nr
V ar[Xv,k,j] ≤

1

nr
E[X2

v,k,j]

≤ rmax

Lnr
E[Xv,k,j] ≤

rmax

Lnr

pL,u(v)

dv

≤ rmax

Lnr

∥pL,u∥1
dv

≤ rmax

nr

1

dv
≤ ϵ2

4L2d2
.

19

YANG LI LIAO WANG

The final inequality holds when setting nr = 4L2

ϵ2
rmaxd, since d = min{ds, dt} and v ∈ {s, t}.

Next, by Chebyshev’s inequality,

P
[∣∣X̄v,k − E[X̄v,k]

∣∣ ≥ ϵ

Ld

]
≤ 1

2
.

Finally, by the standard median of the means estimator, repeat the sampling process log n times
and take the median as the output, we can make the final output satisfies

∣∣X̄v,k − E[X̄v,k]
∣∣ ≤ ϵ

Ld

with probability at least 1 − n−Ω(1). Putting these things together, the total sampling times nr =
4L2

ϵ2
rmaxd log n = Õ(L

2

ϵ2
rmaxd) is enough. ■

Armed with Lemma 22, we are now ready to prove Theorem 11.

Proof of Theorem 11. From Lemma 22, for each k ∈ [L], the inequality
∣∣X̄v,k − E[X̄v,k]

∣∣ ≤ ϵ
Ld

with probability at least 1 − n−1. By Eq. (4), the error produced by Algorithm 1 can be bounded
by: ∣∣∣∣pL,u(v)

dv
−

p̂L,u(v)

dv

∣∣∣∣ ≤ L∑
k=0

∣∣E[X̄v,k]−Xv,k

∣∣ ≤ L∑
k=0

ϵ

Ld
≤ ϵ

d
.

with probability at least 1 − Ln−1 = 1 − Õ(n−1). Next, by Lemma 21, the time complexity for
Phase I is O(L3

rmax
). For the time complexity of Phase II, since we set the number of random walks

nr = Õ(L
2

ϵ2
rmaxd), for each random walk the length is L. So the time complexity of Phase II is

O(nrL) = Õ(L
3rmaxd
ϵ2

). Finally, to balance the time complexity for Phase I and Phase II, we set

rmax = ϵ√
d

. So the total time complexity of Algorithm 1 can be bounded by Õ(L
3
√
d

ϵ) = Õ(
√
d
ϵ).

This finishes the proof of Theorem 11. ■
Finally, we use Theorem 11 to prove Theorem 2.

Proof of Theorem 2. By Equ. (1) and Theorem 11, the approximation output by Algorithm
1 satisfy: |r̂G(s, t) − rG,L(s, t)| ≤ 4ϵ

d w.h.p. By the fact rG(s, t) ≥ 1
2

(
1
ds

+ 1
dt

)
≥ 1

2d , so
|r̂G(s, t) − rG,L(s, t)| ≤ 8ϵrG(s, t) w.h.p.. In addition, by Lemma 9, The L step truncation ER
satisfy |rG(s, t)− rG,L(s, t)| ≤ ϵrG(s, t), so the approximation r̂G(s, t) safisfy:

|r̂G(s, t)− rG(s, t)| ≤ |r̂G(s, t)− rG,L(s, t)|+ |rG(s, t)− rG,L(s, t)|
≤ 8ϵrG(s, t) + ϵrG(s, t) = 9ϵrG(s, t).

This proves that r̂G(s, t) is the 9ϵ-approximation of rG(s, t) w.h.p. Finally, by Theorem 11, the
time complexity of Algorithm 1 is Õ(

√
d
ϵ). ■

Appendix D. Theoretical analysis of Algorithm 3

In this section, we provide the theoretical analysis of Algorithm 3, and prove Theorem 16 and
Theorem 5. First, inspired by Wei et al. (2024) and Li and Sachdeva (2023), we define the ϵ-
contributing set for pL,u.

Definition 23 for any u ∈ V , the ϵ-contributing set of pL,u is defined as Sϵ,u = {w ∈ V :
pL,u(w) > ϵ}.

20

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Next, we observe that the size of ϵ-contributing set is only Õ(1ϵ), independent of n. This imme-
diately follows by Fact 1.

Fact 4 The size of the ϵ-contributing set |Sϵ,u| ≤ L
2ϵ = Õ(1ϵ).

Since in Theorem 16 we just need to approximate the vector such that |p̂L,u(w)−pL,u(w)| ≤ ϵ,
so we only focus on the ϵ-contributing set Sϵ,u. This is because if a node w /∈ Sϵ,u, by definition
0 ≤ pL,u(w) ≤ ϵ, so we set p̂L,u(w) = 0 is already a reasonable approximation. Next, we will
prove Stage I of Algorithm 3 outputs the candidate set S′

ϵ,u that contains Sϵ,u with high probability.

Lemma 24 p′
L,u output by Stage I satisfy the following error guarantee:

• (i) For any pL,u(w) > ϵ, we have |p′
L,u(w)−pL,u(w)| ≤ 1

4pL,u(w) with probability at least
1− n−Ω(1).

• (ii) For any pL,u(w) ≤ ϵ, we have |p′
L,u(w) − pL,u(w)| ≤ 1

4ϵ with probability at least
1− n−Ω(1).

Furthermore, S′
ϵ,u ⊃ Sϵ,u with probability at least 1− n−Ω(1).

Proof of Lemma 24. We define a sequence of random variables output by lazy random walks:
{X(1)

u,w,k,j} with source node u and target node w, and k ∈ [L] and j ∈ [n
(1)
r]. Each X

(1)
u,w,k,j

represents the jth sample of random walk, start from node u with k steps. If this k step random

walk reach w, then X
(1)
u,w,k,j = 1, else X

(1)
u,w,k,j = 0. We denote X̄

(1)
u,w,k = 1

nr

∑n
(1)
r

j=1 X
(1)
u,w,k,j as

the average of these random variables. Thus E[X̄(1)
u,w,k] = eTw

(
1
2I+

1
2P
)k

eu and V ar[X̄
(1)
u,w,k] ≤

1

n
(1)
r

V ar[X
(1)
u,w,k,j] ≤

1

n
(1)
r

E[(X(1)
u,w,k,j)

2] = 1

n
(1)
r

E[X(1)
u,w,k,j]. We set n(1)

r = 128L2

ϵ . For eTw
(
1
2I+

1
2P
)k

eu >
ϵ
L , k ∈ [L], by the Chebyshev’s inequality,

P
[∣∣∣X̄(1)

u,w,k − E
[
X̄

(1)
u,w,k

]∣∣∣ ≥ 1

8
E
[
X̄

(1)
u,w,k

]]
≤ 1

2
.

For eTw
(
1
2I+

1
2P
)k

eu ≤ ϵ
L , k ∈ [L], by the Chebyshev’s inequality,

P
[∣∣∣X̄(1)

u,w,k − E
[
X̄

(1)
u,w,k

]∣∣∣ ≥ ϵ

8L

]
≤ 1

2
.

Again, by the standard median of means estimator, repeating the sampling process O(log n)
times and take the median, this probability can be improved to less than n−Ω(1). Putting it together,
the total sampling times n(1)

r = O(L
2 logn
ϵ) is enough. Finally, since pL,u(w) =

1
2

∑L
k=0 e

T
w

(
1
2I+

1
2P
)k

eu =
1
2

∑L
k=0 E

[
X̄

(1)
u,w,k

]
, we define the approximation p′

L,u(w) = 1
2

∑L
k=0 X̄

(1)
u,w,k (This is equivalent

to the process of Line 4 in Algorithm 3). Thus, the approximation p̂L,u satisfy the following two
conditions:

• (i) For any pL,u(w) > ϵ, we have

|p′
L,u(w)− pL,u(w)| ≤

L∑
k=0

∣∣∣X̄(1)
u,w,k − E

[
X̄

(1)
u,w,k

]∣∣∣ ≤ 1

8
pL,u(w) +

ϵ

8
≤ 1

4
pL,u(w)

with probability at least 1− Ln−Ω(1) = 1− n−Ω(1).

21

YANG LI LIAO WANG

• (ii) For any pL,u(w) ≤ ϵ, we have

|p′
L,u(w)− pL,u(w)| ≤

L∑
k=0

∣∣∣X̄(1)
u,w,k − E

[
X̄

(1)
u,w,k

]∣∣∣ ≤ 1

8
pL,u(w) +

ϵ

8
≤ 1

4
ϵ

with probability at least 1− Ln−Ω(1) = 1− n−Ω(1).

As a result, S′
ϵ,u = {w ∈ V : p′

L,u(w) > ϵ/2} contains Sϵ,u with probability at least 1− n−Ω(1). ■
Next, we perform CGD operations for each node v ∈ S′

ϵ,u. For each v, we set the threshold for
CGD to be rmax

2p′
L,u(v)

. By Lemma 20 and Eq. (3), we have the following equation:

pL,v(u)

du
=

qL,v(u)

du
+

L∑
k=0

∑
w∈V

(
L−k∑
i=0

ri,v(w)

dw

)
eTw

(
1

2
I+

1

2
P

)k

eu. (5)

By the fact pL,v(u)
du

=
pL,u(v)

dv
, this is equivalent to

pL,u(v) =
qL,v(u)dv

du
+ dv

L∑
k=0

∑
w∈V

(
L−k∑
i=0

ri,v(w)

dw

)
eTw

(
1

2
I+

1

2
P

)k

eu. (6)

This enables us to approximate pL,u(v) for any v ∈ S′
ϵ,u by random walks from just a source

node u, see Fig. 1 (b) as an illustration. Similar to the proof for Lemma 22 and Lemma 24,
we define a sequence of random variables: {X(3)

u,k,j}. Each X
(3)
u,k,j represents the jth sample of

random walk, start from node u with k steps. If this k step random walk reach w, then we set

X
(3)
u,k,j =

∑L−k
i=0

ri,v(w)
dw

. We denote X̄
(3)
u,k = 1

n
(3)
r

∑n
(3)
r

j=1 X
(3)
u,k,j as the average of these random

variables. For each v ∈ S′
ϵ,u, clearly we have

pL,u(v) =
qL,v(u)dv

du
+ dv

L∑
k=0

E[X̄(3)
u,k]. (7)

We define the approximation as

p̂L,u(v) =
qL,v(u)dv

du
+ dv

L∑
k=0

X̄
(3)
u,k. (8)

This is equivalent to the expression of Line 12 in Algorithm 3. Next, we prove the concentration
result of p̂L,u.

Lemma 25 When setting n
(3)
r = Õ(L

ϵ2
rmaxdu), the approximation p̂L,u satisfy: |p̂L,u(v) −

pL,u(v)| ≤ ϵ with probability at least 1− n−Ω(1) for any v ∈ S′
ϵ,u with dv ≤ du.

Proof of Lemma 25. we set the threshold for CGD rmax
2p′

L,u(v)
, thus ri,v(w) ≤ rmaxdw

2L2p′
L,u(v)

for any

w ∈ V and i ≤ L. For each random variable X(3)
u,k,j , we have |X(3)

u,k,j | ≤ maxw,k

{∑L−k
i=0

ri,v(w)
dw

}
≤

22

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

rmax
2Lp′

L,u(v)
. Therefore,

V ar[X̄
(3)
u,k] =

1

nr
V ar[X

(3)
u,k,j] ≤

1

nr
E[(X(3)

u,k,j)
2]

≤ rmax

2Lnrp′
L,u(v)

E[X(3)
u,k,j] ≤

rmax

2Lnrp′
L,u(v)

pL,u(v)

dv

≤ rmax

Lnr

1

dv
≤ ϵ2

4L2dudv
,

where the final inequality holds when setting n
(3)
r = 4L

ϵ2
rmaxdu. By dv ≤ du, we obtain V ar[X̄

(3)
u,k] ≤

ϵ2

4L2d2v
, which is equivalent to V ar[dvX̄

(3)
u,k] ≤

ϵ2

4L2 . By Chebyshev’s inequality,

P[|dvX̄(3)
u,k − E[dvX̄

(3)
u,k]| ≥

ϵ

L
] ≤ 1

2
. (9)

Again, by the standard median of means estimator, we repeat the sampling process O(log n) times to
improve this probability to less than n−Ω(1). The total sampling times is n(3)

r = O(L
ϵ2
rmaxdu log n) =

Õ(L
ϵ2
rmaxdu). Since the approximation is defined as p̂L,u(v) =

qL,v(u)dv
du

+dv
∑L

k=0 X̄
(3)
u,k, by Equ.

(9),

|p̂L,u(v)− pL,u(v)| ≤
L∑

k=0

|dvX̄(3)
u,k − E[dvX̄

(3)
u,k]| ≤

L∑
k=0

ϵ

L
≤ ϵ

with probability at least 1− Ln−Ω(1) = 1− n−Ω(1). This finishes the proof. ■
Finally, we use Lemma 25 to prove Theorem 16.

Proof of Theorem 16. First, the error bound of Algorithm 3 directly follows by Lemma 25. For
the time complexity of Algorithm 3, for each u ∈ V , in Phase I we perform n

(1)
r random walks,

each length L, so the time complexity is O(n
(1)
r L) = O(4L

3 logn
ϵ) = Õ(L

3

ϵ). In Phase II we
perform CGD from the candidate set S′

ϵ,u with threshold rmax
2p′

L,u
, the time complexity is bounded

by O(
∑

v∈S′
ϵ,u

L3p′
L,u(v)

rmax
) = O(

∑
v∈S′

ϵ,u

L3pL,u(v)
rmax

). By the fact that ∥pL,u∥1 ≤ L
2 , this is further

bounded by O(L4

rmax
). In phase III we perform n

(3)
r random walks from u, each length L, so the

time complexity is O(n
(3)
r L) = O(L

2

ϵ2
rmaxdu log n) = Õ(L

2

ϵ2
rmaxdu). We sum over all u ∈ V , and

setting rmax = Lϵ
√

n
m , the total time complexity is:

Õ

(
n
L3

ϵ
+ n

L4

rmax
+m

L2

ϵ2
rmax

)
= Õ

(
n
L3

ϵ
+
√
nm

L3

ϵ

)
= Õ

(√
nm

ϵ

)
.

For the space complexity, by Fact 4 and Lemma 24, the size of the candidate set S′
ϵ,u can be

bounded by |S′
ϵ,u| ≤ Õ(1ϵ), so the total space complexity is Õ(

∑
u∈V |S′

ϵ,u|) = Õ(nϵ). This proves
Theorem 16. ■

Arming with the query algorithm (Algorithm 4) and Theorem 16, we are ready to prove Theorem
5.

23

YANG LI LIAO WANG

Proof of Theorem 5. Given any vertex pair (s, t), without loss of generality we assume ds ≤ dt.
By Equ. (1) and the fact pL,s(t)

dt
=

pL,t(s)
ds

, we can express the ER value by

rG,L(s, t) =
pL,s(s)

ds
− 2

pL,t(s)

ds
+

pL,t(t)

dt
.

By Theorem 16, Algorithm 3 outputs the approximation such that |pL,s(s) − p̂L,s(s)| ≤ ϵ,
|pL,t(s) − p̂L,t(s)| ≤ ϵ and |pL,t(t) − p̂L,t(t)| ≤ ϵ. Thus the approximation r̂G(s, t) output by
Algorithm 4 satisfy: |r̂G(s, t)−rG,L(s, t)| ≤ 4ϵ

ds
≤ 8ϵrG(s, t). By Lemma 9, |rG(s, t)−rG,L(s, t)| ≤

ϵrG(s, t), thus |r̂G(s, t) − rG(s, t)| ≤ 9ϵrG(s, t). In addition, since the query time of Algorithm 4
is O(1) for a given vertex pair (s, t), so our algorithm is an (Õ(

√
nm
ϵ), O(1), Õ(nϵ))-ER sketch

algorithm. Finally, we combine our results with a previous resistance sparsifier result from Chu
et al. (2018) .

Theorem 26 Chu et al. (2018) Given graph G with m edges and n vertices, there exist an algorithm
that runs in Õ(m) time and produce a graphH with Õ(nϵ) edges, such that for ∀s, t ∈ V , rG(s, t) ≈ϵ

rH(s, t).

Therefore, our algorithm can be also processed in Õ(m+ n/ϵ1.5) time. Putting it together, our
algorithm is an (Õ(min{m+ n/ϵ1.5,

√
nm/ϵ}), O(1), Õ(n/ϵ))-ER sketch algorithm. ■

Remark We remark that as a corollary, our Õ(
√
nm
ϵ) time algorithm provides the first sublinear

algorithm for the multiple pair ER computation problem. Besides, we remark that if we simply use
CGD to approximate pL,u with threshold ϵ

du
for each u ∈ V , by Lemma 21, this also satisfies the er-

ror guarantee of Theorem 16. In addition, by Lemma 21, the total time complexity of this procedure
is bounded by O(

∑
u∈V

L3du
ϵ) = Õ(mϵ), which is asymptotically the same processing time as the

Algorithm in Dwaraknath et al. (2024) for expander graphs. This is an interesting corollary because
CGD is a deterministic algorithm that achieves the same complexity as the previous state-of-the-art
randomized algorithms.

Appendix E. Other Omitting Proofs

Proof of Lemma 7. We use the similar argument as Lemma 4.3 in Peng et al. (2021). First, we note
that L = D−A = D1/2(I−A)D1/2, whereA is the normalized adjacency matrix. Therefore, we
have:

L† = D−1/2(I−A)†D−1/2 = D−1/2
n∑

j=2

1

1− λj(A)
uju

T
j D

−1/2

=
1

2
D−1/2

n∑
j=2

∞∑
l=0

(
1

2
+

1

2
λj(A)

)l

uju
T
j D

−1/2

=
1

2
D−1/2

∞∑
l=0

n∑
j=2

(
1

2
+

1

2
λj(A)

)l

uju
T
j D

−1/2

=
1

2
D−1/2

∞∑
l=0

((
1

2
I+

1

2
A
)l

− u1u
T
1

)
D−1/2.

24

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Where uj denotes the eigenvector ofA corresponding to the eigenvalue λj(A). Next, we notice the
fact that u1 = D1/21 ⊥ D−1/2(es − et) for any s, t ∈ V , where 1 is the all-one vector. Therefore,

rG(s, t) = (es − et)
TL†(es − et)

=
1

2
(es − et)

TD−1/2
∞∑
l=0

((
1

2
I+

1

2
A
)l

− u1u
T
1

)
D−1/2(es − et)

=
1

2
(es − et)

TD−1/2
+∞∑
l=0

(
1

2
I+

1

2
A
)l

D−1/2(es − et)

=
1

2
(es − et)

TD−1
+∞∑
l=0

(
1

2
I+

1

2
P

)l

(es − et).

This finishes the proof. ■

Proof of Lemma 9. By the definition of rG,L(s, t), we have that

|rG(s, t)− rG,L(s, t)|

=

∣∣∣∣∣12(es − et)
TD−1

∞∑
l=L+1

(
1

2
I+

1

2
P

)l

(es − et)

∣∣∣∣∣
=

∣∣∣∣∣12(es − et)
TD−1/2

∞∑
l=L+1

(
1

2
I+

1

2
A
)l

D−1/2(es − et)

∣∣∣∣∣
=

∣∣∣∣∣∣12(es − et)
TD−1/2

∞∑
l=L+1

n∑
j=2

(
1

2
+

1

2
λj(A)

)l

uju
T
j D

−1/2(es − et)

∣∣∣∣∣∣ .
Next, we denote αj = uT

j D
−1/2(es − et), and α = (α1, ..., αn)

T = (u1, ...,un)
TD−1/2(es −

et). Therefore, we can bound

∥α∥2 = ∥(u1, ...,un)D
−1/2(es − et)∥2 ≤ ∥D−1/2(es − et)∥2 ≤

√
2.

And thus
∑n

j=1 α
2
j ≤ 2. Therefore,

|rG(s, t)− rG,L(s, t)| =

∣∣∣∣∣∣12
∞∑

l=L+1

n∑
j=2

(
1

2
+

1

2
λj(A)

)l

α2
j

∣∣∣∣∣∣ ≤
∞∑

l=L+1

(
1

2
+

1

2
λ2(A)

)l

,

where λ2(A) is the second largest eigenvalue ofA. By the property of the eigenvalues of normalized
Laplacian matrix, λ2(L) = 1− λ2(A). Therefore,

|rG(s, t)− rG,L(s, t)| ≤
∞∑

l=L+1

(
1− 1

2
λ2(L)

)l

≤
(
1− 1

2
λ2(L)

)L 2

λ2(L)

≤
(
1− 1

2
λ2(L)

)L

κ(L) ≤ ϵ

n
.

25

YANG LI LIAO WANG

The final inequality holds when setting L = log ϵ
nκ(L)/ log

(
1− 1

2λ2(L)
)
. We notice the fact

log
(
1− 1

2λ2(L)
)
≤ −1

2λ2(L) and κ(L) ≤ 2
λ2(L) , so we set L ≥ 2κ(L) log n

ϵ is enough. Fi-
nally, by the fact rG(s, t) ≥ 1

ds
+ 1

dt
≥ 1

n , we have |rG(s, t) − rG,L(s, t)| ≤ ϵ
n ≤ ϵrG(s, t), thus

rG,L(s, t) is the ϵ-approximation of rG(s, t). ■

Proof of Fact 1. By Definition 10,

∥pL,u∥1 =

∥∥∥∥∥12
L∑
l=0

(
1

2
I+

1

2
P

)l

eu

∥∥∥∥∥
1

≤ 1

2

L∑
l=0

∥∥∥∥∥
(
1

2
I+

1

2
P

)l

eu

∥∥∥∥∥
1

≤ L

2
.

The final inequality holds because
(
1
2I+

1
2P
)l is a column stochastic matrix. ■

Proof of Fact 2. By Definition 10,

pL,u(v)

dv
=

1

2

L∑
l=0

1

dv

((
1

2
I+

1

2
P

)l

eu

)
(v) =

1

2

L∑
l=0

1

dv
eTv

(
1

2
I+

1

2
P

)l

eu

=
1

2

L∑
l=0

1

du
eTu

(
1

2
I+

1

2
P

)l

ev =
pL,v(u)

du
.

■

Proof of Fact 3. We notice the fact that L = D − A ⪯ 2D. Thus, for any x ⊥ 1, xTL†x ≥
xT 1

2D
−1x. Therefore,

rG(s, t) = (es − et)
TL†(es − et)

≥ (es − et)
T 1

2
D−1(es − et) =

1

2

(
1

ds
+

1

dt

)
.

■

Proof of Lemma 13. To prove Lemma 13, we need the following two Propositions. The first
Proposition is the submatrix representation of ER value, and the second Proposition is the classic
block matrix inverse formula.

Proposition 27 (Corollary 1 in Liao et al. (2023)) rG(s, t) = (es− et)
TL†(es− et) = (L−1

s)tt =
(L−1

t)ss for any graph G. Where L denotes the Laplacian matrix of G, and Ls (resp., Lt) denotes
the submatrix of L, deleting the row and column indexed by node s (resp., t).

Proposition 28 Let S = D − CA−1B, we have:[
A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
Now we use Proposition 27 and Proposition 28 to prove Lemma 13. We observe that the re-

sistance rS2(s, t) is simply the the parallel connection of (ds − x) resistors with resistance value
2. Thus, by the parallel resistance formula, rS2(s, t) =

2
ds−x . For rS1(s, t), we define LS1∪{s,t} ∈

R(n1+2)×(n1+2) as the Laplacian matrix constraint on the edges between S1∪{s, t}, LS1 ∈ Rn1×n1

26

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

as the Laplacian matrix constraint on the edges between S1. Let eN1 denotes the indicating vector
that only takes value 1 inN1 and 0 elsewhere, IN1 denotes the diagonal matrix that only takes value
1 at diagonal entries indexed by N1 and 0 elsewhere, where N1 = {v1, ..., vx} is the set of the
neighbors of s in S1. By the definition of ER and the submatrix representation (Proposition 27), we
have:

rS1(s, t) = (es − et)
TL†

S1∪{s,t}(es − et) =

[
x −eTN1

−eN1 LS1 + I+ IN1

]−1

s,s

Next, we use the block matrix inverse formula (Proposition 28), we have:[
x −eTN1

−eN1 LS1 + I+ IN1

]−1

s,s

=
1

x
+

1

x2
eTN1

[
LS1 + I+ IN1 −

1

x
eN1e

T
N1

]−1

eN1 (10)

Now we prove the second term of the right hand side of Eq. (10) is at most O(logn1

dx). To this
end, we notice that |N1| = x and IN1 − 1

xeN1e
T
N1
⪰ 0, thus

LS1 + I+ IN1 −
1

x
eN1e

T
N1
⪰ LS1 + I.

Next, we define AS1 ,PS1 ∈ Rn1×n1 to be the adjacency matrix and probability transition
matrix constraint on the edges between S1, respectively. By our construction, we have

LS1 + I = (d+ 1)I−AS1 = (d+ 1)I− dPS1

= (d+ 1)

[
I−

(
1− 1

d+ 1

)
PS1

]
.

Therefore, we can bound:

0 ≤ eTN1

[
LS1 + I+ IN1 −

1

x
eN1e

T
N1

]−1

eN1 ≤
1

d+ 1
eTN1

[
I−

(
1− 1

d+ 1

)
PS1

]−1

eN1

=
1

d+ 1

∞∑
k=0

(
1− 1

d+ 1

)k

eTN1
Pk

S1
eN1 .

(11)
Next we use the classical random walk mixing result. For expander graph S1, if we start a ran-

dom walk with initial probability πN1 = 1
|N1|eN1 , after K = O(log n1) steps,

∥∥PK
S1
πN1 − 1

n

∥∥
2
≤

1
n2 . Combing this result with Eq. (11), we have:

eTN1

[
LS1 + I+ IN1 −

1

x
eN1e

T
N1

]−1

eN1

≤ 1

d+ 1

[
K∑
k=0

(
1− 1

d+ 1

)k

eTN1
Pk

S1
eN1 +

∞∑
k=K

(
1− 1

d+ 1

)k

eTN1
Pk

S1
eN1

]

≤ 1

d+ 1

K|N1|+

(
1− 1

d+1

)K+1

1−
(
1− 1

d+1

) |N1|2
2

n1

≤ x

d+ 1
O(log n1) +

2x2

n1
.

27

YANG LI LIAO WANG

Finally, we set n1 ≥ 2d3 ≥ 2dx2, the above inequality is bounded by O(x logn1

d). Combining
this result with Eq. (10), we obtain rS1(s, t) =

1
x +O(1

dx log n1). This finishes the proof. ■

Proof of Lemma 14. Recall that by our construction, for G1 all neighbors of s is in S1. Thus,
rG1(s, t) = rS1(s, t) = 1

ds
+ O(logn1

dds
) = 1

ds
+ O(1

d2s
). This is equivalently saying dsrG1(s, t) =

1 +O(1
ds
). On the other hand, for G2, the neighbors of s are x = (1− ϵ)ds in S1 and ϵds in S2. By

the parallel resistance formula and Lemma 13,

rG2(s, t) =
rS1(s, t)rS2(s, t)

rS1(s, t) + rS2(s, t)
=

2
ds−x

(
1
x +O(1

dsx
)
)

2
ds−x + 1

x +O(1
dsx

)

=
2 +O(1

ds
)

d+ x+O(ds−x
ds

)
=

2 +O(1
ds
)

(2− ϵ)ds +O(ϵ)
.

Thus, we have

dsrG2(s, t) =
2ds

(
1 +O(1

ds
)
)

(2− ϵ)ds +O(ϵ)
=

2

2− ϵ

1 +O(1
ds
)

1 +O(ϵ
ds
)

=
2

2− ϵ

(
1 +O(

1

ds
)

)
.

Finally, we set ds ≫ 1
ϵ , thus dsrG2(s, t) =

2
2−ϵ (1 + o(ϵ)). Therefore,

|rG1(s, t)− rG2(s, t)| =
1

ds

[
2

2− ϵ
− 1 + o(ϵ)

]
=

1

ds

[
ϵ

2− ϵ
+ o(ϵ)

]
≥ ϵ

2

1

ds
≥ ϵ

4
rG1(s, t).

The final inequality holds because rG1(s, t) =
1
ds

+O(1
d2s
) ≤ 2

ds
. This finishes the proof. ■

Proof of Lemma 15. Through our construction, we observe that the only way to distinguish between
G1 and G2 is to perform a neighbor query on node s. For G1, we have all the neighbors of s,
NG1(s) ⊂ S1. For G2, we have N1 ⊂ S1 with |N1| = (1 − ϵ)ds, N2 ⊂ S2 with |N2| = ϵds and
N1 ∪N2 = NG2(s) is the neighbor set of s. Thus, distinguishing G1 and G2 via a neighbor query on
s reduces to determining whether the elements of NG1(s),NG2(s) follow the same distribution. We
prove this result using the classical Yao’s Minimax Principle.

Theorem 29 (Yao’s Minimax Principle, see e.g. Lemma D.1 from Cai et al. (2023)) Let X denotes
the set of inputs of a problem, ∆(X) denotes the set of all distributions over X . Let Aµ denotes
minimum cost among all deterministic algorithms that solves the problem with probability ≥ 2/3,
with respect to the distribution µ ∈ ∆(X). LetR denotes the minimum cost among all randomized
algorithms that solves the problem for all x ∈ X . Then,R ≥ maxµ∈X Aµ.

In our case, we choose the problem inputs X = {N (s)}, and we consider the following two
events C1, C2 ⊂ X :

C1 = {N (s) : ∀v ∈ N (s), v ∈ S1}
C2 = {N (s) : N (s) = N1 ∪N2,

N1 ⊂ S1,N2 ⊂ S2, and |N1| = (1− ϵ)|N (s)|}

28

IMPROVED ALGORITHMS FOR EFFECTIVE RESISTANCE COMPUTATION ON GRAPHS

Next, we consider the distribution µ over X , such that: (i) C1 happens with probability 1
2 and

∀x ∈ C1 ⊂ X happens with equal probability; (ii) C2 happens with probability 1
2 and ∀x ∈ C2 ⊂ X

happens with equal probability. We consider any property testing deterministic algorithm A, such
that A should answer YES if there are ≥ ϵ|N (s)| number of nodes v ∈ N (s) in S2; A should
answer NO if there are < ϵ|N (s)| number of nodes v ∈ N (s) in S2. We denote A(C1), A(C2) as
the random variable, which represents the answer of A on some x ∈ C1 uniformly randomly (resp.,
x ∈ C2 uniformly randomly). We consider when A succeeds with probability ≥ 2/3:

2

3
≤ Pµ[A succeeds] =

1

2
P[A(C1) = NO] +

1

2
P[A(C2) = Y ES].

Since C1 is fixed, we only need to consider the second probability P[A(C2) = Y ES]. We
assume A makes q queries on C2. Then,

P[A(C2) = Y ES] = P[A(C2) = Y ES|A(C1) = A(C2)]P[A(C1) = A(C2)]

+ P[A(C2) = Y ES|A(C1) ̸= A(C2)]P[A(C1) ̸= A(C2)]

≤ P[A(C1) = Y ES] + P[A(C1) ̸= A(C2)]

= P[A(C1) = Y ES] + P[one query returns v ∈ S2]

≤ 1− P[A(C1) = NO] + ϵq.

(12)

The final inequality holds because there are only ϵ|N (s)| randomly chosen elements in S2. For
each fixed query, the probability that we find some v ∈ S2 is at most ϵ. Arming with Eq. (12), we
have:

2

3
≤ 1

2
P[A(C1) = NO] +

1

2
P[A(C2) = Y ES] ≤ 1

2
+

1

2
ϵq.

As a result, q ≥ 1
3ϵ . This implies A makes at least Ω(1ϵ) queries on C2. By Yao’s Minimax

Principle, any randomized algorithm with success probability ≥ 2/3 that distinguish NG1(s) and
NG2(s) requires Ω(1ϵ) queries. This finishes the proof of Theorem 12. ■

29

	Introduction
	Technique overview
	Related Work

	Preliminaries
	Basic representation
	Online ER Computation Algorithms
	Lower Bound for Online Single-Pair ER Computation
	Index-based Algorithms for ER Computation
	Conclusion
	Guideline of the Appendix
	Parallel Resistance Formula
	Theoretical analysis of Algorithm 1
	Theoretical analysis of Algorithm 3
	Other Omitting Proofs

